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On nonlinear effects near the wing-tips of an
evolving boundary-layer spot

By F.T. SmIiTHn

Department of Mathematics, University College London, Gower Street,
London WC1E 6BT, U.K.

A study is made concerning nonlinear effects arising in the free evolution of three-
dimensional disturbances in boundary layers, these disturbances having a spot-like
character sufficiently far downstream of the initial disturbance. The theory proposed
here takes an inviscid initial-value formulation, typically that involving the three-
dimensional unsteady Euler equations; such a formulation is felt to offer hope of
considerable analytical progress on the nonlinear side, as well as being suggested by
some of the available experimental evidence on turbulent spots and by engineering
modelling and previous related theory. As the typical disturbance amplitude is
increased, nonlinear effects first enter the reckoning of the large-time large-distance
behaviour in edge layers near the spot’s wing-tips which correspond to caustics in
linear theory. This behaviour is associated with the major length scales, proportional
to (time)? and to (time), in the evolving spot; within the former scale it is interesting
that the three-dimensional Euler flow exhibits a triple-deck-like structure; within
the latter scale, in contrast, there are additional time-independent scales in
operation. Two possible mechanisms I and II are found for nonlinearity to affect the
evolution significantly, near a wing-tip. In I, weakly nonlinear effects make
themselves felt in the bulk of the wing-tip flow, accompanied by a near-wall layer
where full nonlinearity substantially alters the local vorticity. The analysis then
leads to a nonlinear amplitude equation which is the second Painlevé transcendent,
whose solution properties are well known. In contrast, mechanism II, which is
believed to be the more likely case, has its nonlinearity being mostly due to a three-
dimensional mean-flow correction that varies relatively slowly. The resulting
nonlinear amplitude equation then has a novel form, solutions for which are obtained
computationally and analytically. The further repercussions from the two mech-
anisms are somewhat different, although each one points to a subsequent flooding
of nonlinear effects into the middle of the spot. Mechanism I suggests that strong
nonlinearity is produced next by relatively high-amplitude disturbances, whereas
the favoured mechanism II indicates instead a strongly nonlinear influence on the
mean flow next occurring at input amplitudes that are still relatively low. The
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— additional significance of viscous sublayer bursts is also noted, along with comments
g y g

§ P on comparisons with experiments and direct numerical simulations. Firm com-
oln parisons are felt likely to arise for the next stage implied above, where the middle of
M= a typical spot is affected substantially.

)
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T O i
= 1. Introduction
- The evolution of a turbulent spot from an initial localized disturbance in an
5% otherwise planar laminar boundary layer is of much interest in terms of both the
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132 F.T. Smith

fundamental fluid dynamics involved and the applications. Many experimental
studies have been made, with fascinating and somewhat varied results, for example
on the main arrowhead-shaped part of the spot, on its tail, on the notional speed of
the spot, on its spreading rate, and so on.

Prominent among other very interesting features found experimentally appear to
be the following. (@) Much of the dynamics in a spot resembles closely that in a fully
turbulent boundary layer; see papers from Emmons (1951) to Katz et al. (1990) and
references therein, and below. (b) A turbulent spot develops fast, typically from a
localized disturbance with large initial amplitude (Glezer et al. 1989 ; Riley & Gad-el-
Hak 1985). (¢) The growth and spreading of the spot probably take place in a
domino-like manner, possibly associated with the successive production of hairpin
vortices in the flow near the solid surface (Perry et al. 1981; Walker 1990; see also
Falco 1979 ; Smith et al. 1991). (d) The spanwise growth of the spot greatly exceeds
the growth normal to the surface (Gad-el-Hak et al. 1981 ; Glezer et al. 1989 ; and see
Bandyopadhyay (1983) for observations on the various angles involved). (e) The
front and the spanwise side edges, or wing-tips, of the spot are notably sharp, as
kindly pointed out to the author by Sir James Lighthill (personal communications):
see Lighthill (1963, and references therein), Schlichting (1979), and we note here also
Glezer et al.s (1989) study of interaction between the spot and trailing wave packets
especially near the wing-tips (cf. Chambers & Thomas 1983 ; Wygnanski et al. 1979).
Several other experimental features of interest are also described in the above papers,
as well as in Schubauer & Klebanoff (1956), Head & Bandyopadhyay (1981),
Johansson et al. (1987), Henningson & Alfredsson (1987), Robinson (1991), and
references therein. Again, interesting computations have been performed by Leonard
(1981), Bullister & Orszag (1987), Henningson et al. (1987), Henningson & Kim
(1991), Fasel (1990), Fasel & Konzelmann (1991) for channel flows (mostly) and
boundary layers (more recently). Most are confined to temporal simulations only but
they seem to reproduce fairly well some of the major experimental findings. Much
extra physical insight and understanding have still to be provided, nevertheless.

It seems clear that a strongly nonlinear theory is desirable for this area but as yet
there is no substantial effort in that direction, specifically for spot evolution, i.e. the
initial-value problem, as far as we know. (For the record, there is a body of
interesting work on nonlinear caustics, in acoustics for example, as in early studies
by J.-P. Guiraud and more recently by Howe (1967, 1968), Hunter & Keller (1988),
Cates & Crighton (1990), and references therein, as kindly noted by Sir James
Lighthill.) Our aim here and in the related works (Doorly & Smith 1992; Smith
1991 a; see also Gaster 1968), as far as possible, is to develop a nonlinear theory and
in particular address the experimental findings (a)—(e) above. Many complex
phenomena arise during spot evolution in practice, there is significant dependence on
the particular experimental configurations and conditions used, and there are many
nonlinear aspects to be explained or explored, but, as we shall see, a large part of the
experimental findings above can be described by the theory, taken in conjunction
with the study of Smith et al. (1990).

On the theoretical front, then, there is good reason to believe that the Kuler stage
of Smith ef al. (1990), Smith & Burggraf (1985) is coming close, or at least the closest
of any rational theory for high Reynolds numbers (Ee), to describing boundary-layer
turbulence in a systematic fashion. Support for that belief is provided in the two last-
named papers and also by the more empirical modelling of Walker (1990); see also
Smith et al. (1991), Hoyle et al. (1991), Peridier et al. (1991 a, b). The local flow within
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Nonlinear effects near wing-tips 133

the boundary layer is controlled predominantly by the three-dimensional (3D)
unsteady nonlinear Euler equations, according to the above description/model,
apart from interludes, however brief, when eruption of the otherwise thin viscous
sublayer occurs near the surface and injects a substantial burst of localized vorticity
into the Huler flow (see also below). In consequence, it seems not unreasonable to
tackle the spot-evolution problem theoretically first by means of the same Euler-
stage nonlinear approach, but set as a nonlinear 3D initial-value problem for a
localized input disturbance (rather than a fixed-frequency problem, for example).
That indeed is the current concern.

Further, the present article considers nonlinear effects acting near the wing-tips or
side edges of a spot, since the earlier linear theory of Doorly & Smith (1992) suggests
that that is where nonlinearity may appear tirst naturally as the typical input ampli-
tude is increased (possible alternatives being resonant interactions, vortex/wave
interactions, unsteady or nonlinear critical-layer effects). This also has possible
connections with the experimental finding (e) above. The linear theory just
mentioned, in which the initial-value problem can be solved in exact form for some
contexts, shows the emergence of a number of distinct zones downstream at
comparatively large times, the two main length scales induced being proportional to
the scaled time and to its square root. The maximum amplitude, however, is
produced in a relatively thin region near the wing-tip of such a linear spot. That
property, along with the near-neutrality of the linear-spot behaviour at large times
and distances, motivates the present study of nonlinear wing-tip effects. Moreover,
these effects are found to lead on subsequently to other cases, corresponding to
further increases in the input amplitudes, where nonlinearity can flood into the
middle portion of the spot as well.

Certain interesting features arise in the study of 3D nonlinear wing-tip flow. The
motion there becomes multi-structured at large times and distances (see §2 below)
and it is perhaps surprising to find that the solution of the 3D Kuler equations can
acquire a 3D triple-deck form, in the square-root scale mentioned above. The
downstream motion then develops in one of two ways I or II. The first way (I)
exhibits a weakly nonlinear bulk but supplemented by strongly nonlinear near-wall
and critical layers (see §§3-5). As a result the mean-flow correction in the bulk
becomes singular near the wall, as well as exhibiting a logarithmic dependence and
some degree of indeterminacy in the displacement. The near-wall singularity is due
to the vanishing of the mean flow itself (which has a linear velocity profile) there,
while the indeterminacy is associated with the unknown wall-layer vorticity and
possibly with vortex stretching at earlier times. In passing we observe that even in
the 2D analogue (Smith & Burggraf 1985) some arbitrariness in the vorticity may be
present but it does not have to be, unlike in the current 3D flow. The 2D case,
moreover, can give rise to a Benjamin-Ono equation, yielding nonlinear travelling
waves or solitary waves, and dispersive waves, that confirm the two length scales
(proportional to time and to its square root) referred to previously. In the current 3D
setting, the amplitude equation for the nonlinear wing-tip solution appears as a
solvability condition in effect and is found to be an Airy equation with an additional
nonlinear contribution. The second way (II) has the effects due to a 3D mean-flow
correction being dominant, with the wall-layer and critical-layer influences
diminished in relative terms, and this again produces a nonlinearly modified Airy
equation. The nonlinear amplitude equations for both cases I and II in turn lead on
to certain significant repercussions regarding nonlinear effects at increased

Phil. Trans. R. Soc. Lond. A (1992)
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134 F.T. Smith

amplitudes, where interesting scales emerge which seem to be physically sensible, for
the middle of the nonlinear spot, although the balances involved then are quite
different for the two ways I and II just mentioned. This study and the related works
also suggest possible new experiments of interest concerning the effects of increased
input amplitudes on spot evolution.

The analysis is presented in §§2—6 below, with further comments being given in §7,
while the Appendices A and B are concerned with further detailed points. The global
Reynolds number Re, based on the airfoil chord and free-stream speed in the
aerodynamic context for example, is assumed large, and we address here the 3D
nonlinear incompressible régime. The work is aimed eventually at relatively high-
amplitude nonlinear responses, as opposed to gradual transition following linear
instability for instance (see also comments in Doorly & Smith (1992) and related
papers). Hence we begin in §2 with the 3D Euler context as our main concern, as
assumed above. There are in fact three major contexts in which the analysis can be
couched, as §2 points out. In all three, the viscous sublayer and its eruptions are
neglected here, effectively, as a starting point. These eruptions and the ensuing local
vortex formations are important in practice, nevertheless, and they are the subject
of other recent theoretical studies, by Smith (1988), Hoyle et al. (1991), Peridier et al.
(19914, b), as reviewed by Smith (1991b), Walker (1991), Smith et al. (1991) for
example. Not least, they almost certainly play a key part in the domino process
mentioned earlier.

The bulk of the flow in a wing-tip layer is discussed in §3, followed by the critical-
layer and wall-layer studies in §§4, 5. The properties found are brought together in
§6, along with the pressure-displacement interaction laws, to yield the nonlinear
amplitude equation. The equation depends on which of the two ways I and II
described in the last-but-one paragraph is dominant, although it is felt that generally
the second way is more likely to hold in practice ; see §6a, b and the further discussion
in §7.

There may be impact also in several other areas, as noted by Doorly & Smith
(1992), including ship wakes and compressible boundary layers. Many issues and
aspects are left unresolved, of necessity, and some of these are taken up in related
papers. Again, we should emphasize that we do not claim uniqueness in the nonlinear
spot behaviour proposed for relatively large times and distances: see also §§5 and 7.

2. The nonlinear initial-value problems, and background

There are three main contexts (figure 1) in which the present work on nonlinear
initial-value problems can be set. The first concerns the Euler stage (Smith &
Burggraf 1985; Smith et al. 1990) for large fully nonlinear disturbances, where the
unsteady nonlinear 3D incompressible Euler equations apply,

Uy to,+w, =0, (2.1a)

uyFus, +ou, +wu, = —p,, (2.1D)
v+ uv, +ov, +wv, = —p,, (2.1¢)
Wy uw, +vw, +ww, = —p,, (2.1d)

throughout the boundary layer, at large global Reynolds number Re. Here the non-
dimensional velocity components w,»,w and the corresponding x,y,z cartesian
coordinates (streamwise, normal and spanwise, respectively, with an origin shift) are

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. (a) Schematic diagram of the flow structure (in xz plan view, upper half only) at large
times ¢, due to the initial disturbance (i), including the O(t%) elliptic zone (ii) (with three layers in
), the edge layer (iii) near the wing tip, and the O(t) sized zone (iv) further downstream where
length scales of O(1) are also induced. This is for the three contexts, and the angle 6,(~ 19.47°),
described in §2. (b) The flow structure in the normal direction, within the wing-tip region, for both
cases I, II; the wall layers are different for the two cases.

scaled with respect to the local free-stream speed and the typical boundary-layer
thickness O(Re™?), in turn, and similarly for the O(Re™?) timescale { and the O(1)
pressure scale p. The main boundary conditions are

(1,0,0,0) as y— o0, (2.2a)
(w, v, w, p) =>{ (4e(%),0,0,0) as a®+2%—> 0, (2.2b)
v=0 at y=0, (2.2¢)

where the conditions (2.2a, b) are to match with the free stream outside the boundary
layer and with the undisturbed boundary-layer profile u,(y) holding sufficiently far
from the initial disturbance, while (2.2¢) is the tangential-flow constraint at the
solid surface. The profile u,(y) is supposed here to be monotonic, inflexion-free, and
uy(00) = 1, %y (0) = 0, uy(0) = A, > 0, an example being the Blasius profile. The initial
disturbance itself is fully nonlinear, so that

(uw, v, w, p) is prescribed (for all z,y,2) at t=0, (2.3)

consistent with (2.1a-d). The problem (2.1a)—(2.3) is a computational one generally.
The present research focuses on the issue of the possible solution properties (of the
nonlinear initial-value problem above, and those below) at large times, and especially
far downstream of the initial-disturbance position, given some guidance from the
linearized analysis of Doorly & Smith (1992). At large times ¢ two major length scales
arise in the plan-view (xz plane), we suggest, one very far downstream at distances
O(t) and the other less far downstream, at distances O(#%). These two scales also occur
in the Doorly & Smith work. Here we are concerned mostly with the O(t*) length
scale, since certain significant features are found to arise first there, even though this
is felt to be the zone that trails the majority (the O(t) zone) of the spot. Again, see
figure 1. An order-of-magnitude argument suggests that, in the O(t) zone, the large-
time solution of the unsteady Euler problem (2.1a)-(2.3) can take on a three-layer
form, analogous with the triple-deck structure. The ‘lowest’ layer has y being small,

with
[w, v, w, p] ~ [t:0, 2 W, 9], ¥y = t"%g}, (2.4a)

whereas in the ‘middle’ layer

[, v, w, p] ~ [ue(y) + 124w (y), —t7 A g ug(y), O™, t7'p), y =0(1), (2.4b)
Phil. Trans. R. Soc. Lond. A (1992)
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136 F.T. Smith

and in the ‘uppermost’ layer in the outer reaches of the boundary layer

(s}

w, v, w, pl ~ [14+t Y, (70, Y, P,y = . (2.4¢)
P 1

Here the unknown surface pressure f)A(XAZA) and negative displacement A (X, Z)
depend only on the scaled coordinates X, Z, defined by

(,2) = (X, Z) (2.5)

in the present zone. The main resulting governing equations are those for the lowest
layer, namely

Ug+V;+W; =0, (2.6a)

— 0+ (UK Ug+ (V) U+ (W=32) Uy = — g, (2.6)

— W+ (O —=18) Wy + (V+39) Wy+ (W —32) Wy = =5, (2.6¢)

from (2.1a, b, d), (2.4a), (2.5), with (2.1¢) confirming that 0p/3y must be zero; the

main boundary conditions are

)<)

=0 at =0, (2.6d)
U~g+AX,Z), W0, as o0, (2.6¢)
from (2.2¢) and matching between the expansions (2.4a, b) respectively, with A,

normalized to unity ; and the unknown displacement effect present in (2.6¢) is re latcd
to the unknown surface pressure via the double Cauchy—Hilbert integral

J[ J[ gggqsozlgd;s @7

because of the potential-flow properties induced by (2.4¢) with (2.1a-d) and the
matching with (2.46). An alternative formulation for this pressure—displacement
interaction is in terms of the pressure in the outermost layer, satisfying

V>

0%+ +0%)p =0, (2.8a)
p>pX.Z), py>AeX.Z), as g0+, (2.80)
70 in the farfield, (2.8¢)

in view of (2.4b, ¢), (2.2a). Hence we are left with the task of solving the nonlinear,
similarity, inviscid-boundary-layer-like system (2.6a—¢), subject to the inter-
action law (2.7) or (2.8a-¢), for the O(#) zone propertics.

In general the task is still a computational one, and the problem remains elliptic,
although probably simpler than the original Euler-equation problem. The work in
the following sections considers the possible behaviour of solutions of (2.6), with (2.7)
or (2.8), relatively far downstream where X is large and positive, Z is also large
typically, and certain distinctive physical features first emerge. In particular, we
examine the flow response near the spot’s wing-tips in two ‘edge layers’, where
nonlinear effects can be concentrated (figure 1), these layers lying in the directions
given by Z ~ + uX say where p is a positive constant, as indicated by the Doorly &
Smlth (1992) findings. Thus for |Z| < X, i.e. the entire region between the two edge
layers, the flow properties become linear far downstream as in the last paper, and
similarly outside where |Z] > jiX, but nonlinear properties hold inside the edge layer
where

—uX =Xy, with 7 of O(1), (2.9)
Phil. Trans. R. Soc. Lond. A (1992)
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Nonlinear effects near wing-tips 137

and likewise for the other edge layer near Z = —uX. The plan-view scaling in (2.9)
is inferred from the last paper, as are the major normal scaling

7 =Xs, with s of O(1), (2.10)

and the expansion of the negative displacement,
A=X"YEA,(n)+cc)+..., (2.110)
with E = expl[i(b, X2+ A Xbp))], (2.11b)

after some working. The power m is fixed below, while b,, A are constants, and c.c. (or,
later on, an asterisk) denotes the complex conjugate. If the value of m is sufficiently
small or negative (2.11a) leads to linear behaviour in the edge layer, as in the last
paper, but as m is increased a crucial stage is reached -at which nonlinear dynamics
first affect the leading-order displacement term A4,. Order-of-magnitude reasoning
establishes that crucial value to be when either

m=% or m=1, (2.11¢,d)

and we concentrate first in detail on (2.11¢) in the following sections, before
addressing (2.11d), in §6b, using similar working. The former seems the more obvious
case at first. For, with (2.10), (2.11a), the velocity Uis equal to Xs with an O(Xm™1)
correction, due to (2.6¢), and so the relative effect of the typical amplitude-squared
nonlinearity is of the order X4, This is to be compared with the relative effect in
(2.11b), of order X3. The two effects are comparable when 2m—4 = —4, yielding
(2.11¢). (The alternative reasoning connected with (2.11d) is given in §6b below.) So
(2.11a—¢) form the basis for the nonlinear theory starting in the next section, with the
transformations

0g >0 — (uXs—InX 10, —X 159, (2.12a)
9;~X50,, ;X719 (2.12b, ¢)
and Eg = (2b, X +3X)il, E, = AXik, (2.124d, ¢)

from above. In addition, two other 7 scalings can be identified at large X, one for a
near-wall sublayer and the other for a critical layer in effect, and these are studied
in §§4, 5. Finally here, the constant y is equal to 8%, corresponding to the wake half-
angle of arcsin} = 19.47° as in Doorly & Smith (1992), in view of the linearity holding
outside and in-between the two edge layers.

Before moving on to the large-distance analysis in §§3-6, we should mention the
second and third contexts of interest, further to the first one in (2.1a)—(2.3). The
second context concerns relatively long-scale disturbances to the boundary-layer
motion. These may be viewed as a sub-case in the first context above, with the
scalings, for large length factors L,

(LY L3, L7t L2, (2.13a)
[w, v, w, p] ~{ [uo(y) +OL™), L2, L2 L?], (2.13b)
[1,0,0,0]14+O(L72), (2.13¢)
[®,2,8] ~ [L,L,L%, (2.13d)

applying for three distinct layers in the normal direction,
y~L71 1,L, inturn. (2.14a—c)

Phil. Trans. R. Soc. Lond. A (1992)
6 Vol. 340. A
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138 F.T. Smith

The reasoning is equivalent to that for 3D triple-deck theory (see also above), applied
in the present inviscid setting again but now holding for all scaled time. From
substitution into (2.1a-d), (2.2a-c), the resulting governing equations to be
addressed are thin-layer versions of (2.1a-d ), namely with (2.1a, b, d) staying intact
but (2.1¢) replaced by

p, =0, implying p = p(z,z,). (2.150)

Moreover, the boundary conditions become
u~y+4, w—0, as y-—>o0, (2.150)
(w,v,w,p)—>(%,0,0,0) as xz*+2*—>o00, (2.15¢)

along with (2.2¢), and the unknown pressure and displacement (—A4) interact
through the outer potential-flow description

(@3 +05+05)p =0, (2.15d)
f)%p? f)ﬁg)Axx, as ?790'1_ (2156)

(or the counterpart of (2.7)), stemming from (2.13¢). The nonlinear inviscid thin-
layer problem is therefore set by (2.1a, b, d), (2.15a—¢). An apparently self-consistent
candidate for the large-time response here, however, is again given by (2.6), with
(2.7) or (2.8), since the asymptotes (2.4a), (2.5) also tie in exactly with the current
context of (2.13a)—(2.15¢) (in a sense, L in (2.13) replaces £ in (2.4)). Hence, in turn,
the large-distance description of edge layers based on (2.9)—(2.11¢) also applies to this
second context. The third context to note is that of 3D triple-deck theory, where the
controlling equations are as for the second context above but with the viscous
contributions 3%*u/dy?, 0*w/dy* added to the right-hand sides of (2.1b,d) re-
spectively, along with (2.15a—e). This occurs if L in (2.13a) ff. becomes of the order
Ré3, effectively. A short-length or fast-time scaling in this viscous-inviscid context
as in Doorly & Smith (1992) then reinstates the inviscid thin-layer version of the
second context, however; cf. the finite-time singularity described by Smith (1988),
Hoyle et al. (1991), Peridier et al. (1991a, b) and Hoyle (1991). In consequence, the
large-time large-distance account proposed in (2.6a—¢), (2.7) (or (2.8a—c)), with
(2.9)~(2.11¢), appears to have some relevance to all three contexts, as far as the O(#?)
downstream zone is concerned, although it should be added that the O(f) zones
further downstream are case-dependent, and our main interest overall lies in the
highest-amplitude case encountered in the first context.

3. Main features in the bulk of the flow

The expansion of the flow solution at relatively large distances X » 1 in the edge
layer astride Z = uX is inferred from §2 and takes the underlying form

U= Xs+Xs(Bug+E uk) k+ ...+ X 5By, K24 Buyy k+uy0+ B 'uk «
+ B2k k) 4 A X (B Uy kP A Bug k+..)+ ..., (3.1a)
V= X¥(Bv,+E 0¥ k4 ...+ X3(E,, 2+ )+ .+ X (EPoy®+..)+ ..., (3.1b)

W = Xs(Bw,+Ewk) k+ ...+ X 5B, k24 )4+ X Y EPwy k34 ..) 4 ..., (3.1¢)
Phil. Trans. R. Soc. Lond. A (1992)
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Nonlinear effects near wing-tips 139
for the velocity components, and
p=Xs(Bgy+Eg¥) k+ ...+ X3(B%15 k24 By, &+ 910 K2+ E g% &
+E g5 k) + o (B kP4 By kP + By k+..)+ ..., (3.1d)
A=X3EA+EA¥ c+ . A X 5B A, k24 4+ A+ ...
o A XY EPA Yy kP4 .+ BAy k+..), (3.1¢)

for the pressure and displacement respectively. Here « (= X™3) = 1, as suggested by
(2.11¢); the alternative (2.11d) giving « = X3 is deferred until §6b below. The
unknown velocity coefficients «,,, v,, w, depend only on s, %, while g,,, 4,, are unknown
functions of # alone, with the explicit £-dependence as shown. The arrangement of
the powers of /£ in the terms above is partly due to the nonlinear effects present and
partly to the wave-like dependence in £ defined in §2. The O(1) coordinates s,y are
also defined in §2. The successive determination of the first-order contributions u,,
etc., the second-order contributions w,,,u,;, %, etc., and the third-order con-
tributions u,,, etc., is addressed below, together with additional terms that arise.
Here for the sake of generality we consider first the solution properties of (2.6a—e)
alone, subject to the large-distance behaviour in (3.1a—e), before invoking (in §6
below) the extra features implied by the particular external pressure—displacement
relation (2.7) or (2.8a—c).

Substitution of (3.1a—e) into the large-time equations (2.6 a—c) yields the successive
controlling equations as follows. The balances of continuity become:

iBuy+ vy, +idw, =0, where B = (2b, —Au), (3.2a)

at first order (£ terms only);

2iButyy + V15, + 21Aw;, = 0, (3.2b)
1Buy; + vy + 14wy, — pg, +w,, = 0, (3.2¢)
Vy0s = 0, (3.2d)
at second order, from contributions proportional to £* K, E° in turn; and
1Bug; + vg15 1AWy, + Aqping — pttyy,, +wyy, = 0, (3.2¢)
— Py, F Vggs + Wy, = 0, (3.21)

at third order, from the terms proportional to H,H° respectively. Likewise, the
streamwise momentum balances yield, at first order,

idu, +v, = —1iBy, (3.3a)

(where the variable § = Bs—b,), followed by the second-order contributions in £2, £,
E°® in turn,

210U,y + 015 +1BuUf 4+ vy Uy + 1Aw, uy = — 2By, ,, (3.3b)
10uyy + vy — psug, = — 1By + pgo,, (3.3¢)
V1o T { — g 1Bu + v, uf, —w, iAug} +c.c. =0, (3.3d)

and the third-order terms in #, £° give respectively
10Uy + gy — pstyy, + (s — 1) Anin,
F 1B (g U+ Uy U5 ) + Vg Uggs F VG Unng T V15 UG
FIA (205 uyy w10 Uy — Wi Uy ) = — 1By + pg11, — 1274, (3.3¢)
— ustyg,+ V90 +f1 = U0y (3.3f)
Phil. Trans. R. Soc. Lond. A (1992)
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140 F.T. Smith
with
fi = {u(—iBuf —/Lu(’)“”)—uu iBug + v ufy + v ug
+wo(—idufy +ug ) —wy, idugi+c.c. (3.39)

Finally here, the spanwise momentum equations become, at first order,

idw, = —iAg,, (3.4a)
then at second order, for the contributions in E? K, E° respectively,
210w, 5 + 1Bu, wy + vy Wy, + 1AW = —2iAg,,, (3.4b)
10wy, — psw,, = —iAgy; — gy, (3.4¢)
{—u,iBwi +v,wi —w,idwE} +c.c. = 0, (3.4d)

while at third order we have
10wy, — pswyy, + (s — 1) Aniw,
+1B(2ug w1y + Uy Wo— Ugy W) + 0y Wygs U Wi
015 Wiy H 1A (W, Wy +wy, W) = —iAgZI_gllqﬂ (3.4¢)
— WSWyg, +fo = — G109 (3.41)
with
fo = {ug(—iBw} —,uw(’)“ﬂ) — Uy 1Bwg + v, wi + vy, w05
+wy(—iAwf; +wg) —wy, idwgt +e.c.,  (3.49)
from the terms involving £, £° in turn. The need to include both of these third-order
balances is explained subsequently. The forcing effects present in the higher-order
balances above stem either from the linear-based modulation existing in the wave
part £ of §2, as in all the linear terms with subscript zero in (3.2¢), (3.3¢), (3.4¢) and
subscripts zero, 11, in (3.2¢), (3.3¢), (3.4¢), or from nonlinear inertial coupling as in
the velocity-squared terms throughout (3.3b,d-f), (3.4b,d—f), apart from the
variations of the mean-flow correction apparent in (3.3f), (3.4f). The solutions are

as follows.
At first order, (3.2a), (3.3a), (3.4a) apply subject to the constraints

v,=0 at s=0, w,~4, as s—>o00, (3.5)

from §2. Hence the fundamental solution is given by

A . A .
wy = ——g‘l, v, = —BA,is, u,= A0+T‘(§°, (3.6a-¢)
with the resulting ‘internal’ pressure—displacement relation being
A, = kg,, and k= (B*+A%) B! (3.64d, )

defines the constant k. The results here and in the remainder of this section hold
strictly for & # 0, i.e. for s # B'b,, in view of (3.6a, ¢) and a critical layer is induced,
close to the level § = 0, which is studied in the next section. Another restriction
required is that s > 0, because it is found below that a wall layer is also induced close
to the surface as discussed in §5.

At second order, the second harmonic (£?) components satisfy (3.2b), (3.3b),

Phil. Trans. R. Soc. Lond. A (1992)
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Nonlinear effects near wing-tips 141

(3.40), subject to (3.5) but with the subscripts zero replaced by 12. These, coupled
with the results in (3.6a—e¢), lead to the velocity solution

A b,—2Bs
Wyy = __!;_1_2_( 2 )/\AOgOB, (3.70)
1 fa, by,  c
o = =g (B2 22+ 22), (3.70)
v, = —2Big,, — 9, — 210U, ,, (3.7¢)
where Ao = —2iA%,, by, = 4BA,g,1A% ¢, = 3b; B4, g,iA%,

Y, =AEBi+A,g,iA*(2BS—b,) 072, and the internal pressure—displacement relation
between g,,, 4, is
2ib, kg,, = 2ib, A,, — Bid2. (3.7d)

Next, the extra fundamental terms proportional to £ are controlled by (3.2¢), (3.3¢),
(3.4¢) and (3.5) again, with subscripts 11 instead of zero, and therefore it is found
that

oy, = _(L%%ﬂm)ﬁ;wgwgi, (3.84)
wyy = (b |y (3.8b)
n =g\ o) T
— s M0y 4 | g 5 3.8
V11 = US B +Ag, | — DGy + pgo, — 10Uy, (3.8¢)
where ayy = —iA%gy, —2A(1+uAB™Y) g,,, by = —2uA%b, B7'g,,.

So the internal relation here, between the pressure and displacement coefficients g,,,
A,,, takes the form

ib, kgy, = iby Ay + B 4403 p+ (U + 1) (pA —4by) Ab g, (3.84)

In contrast, the mean-flow correction proportional to £° remains largely undeter-
mined at this level, apart from the result

vy =0, (3.9)

consistent with (3.2d). This is because both the forcing terms in curly brackets in the
two momentum balances (3.3d), (3.4d) work out to be identically zero, given the
fundamental solution in (3.6a—c). The absence of governing equations for u,,, w,, at
this order is directly due to these velocities being independent of the fast variable &,
by definition, and instead we have to turn to the higher-order balances just below
which control the relatively slow variation of the mean-flow-correction velocities u,,,
w,,. Later, in §6a, we find the result that for « unity g,, is also identically zero, which
again stems from the relative slowness of the mean-flow variation, specifically in the
displacement, —E°A4,, when inserted in the pressure—displacement link covered by
(2.8a—c).

At third order, then, we have both the mean-flow (E°) and the forced-fundamental
(£) responses to consider, in the main. The former, which affect the latter, but not
vice-versa, are governed by (3.2 ), (3.3f), (3.4f) and the outer constraint is u,, >4,
as s> 00, as expected, but the inner constraint here needs extra consideration, as

Phil. Trans. R. Soc. Lond. A (1992)
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142 F.T. Smith

does that for the forced fundamentals, for the following reason (see also §6b below).
The solution for the derivative of the spanwise mean-correction velocity follows from
(3.4f, g) in the form

Wiy = WSRO+ By 0P+ By 070 + 109> (3.10a)

on use of the solutions (3.6a—c), (3.8a—c), where

By = 20pk(9o95)ys  Bo = b1 k(2b,+3An) (9095),  Bs = 20T Apk(g,97), (3.106-d)

The derivative of the streamwise component may then be obtained from (3.2f),
(3.3f, g), for example by differentiation of (3.3 f) with respect to s and elimination
of v,, using (3.2f), yielding the result

Uyoy = A107] +:“_25_1[ﬂ o+ Po 02+ 070+ 91077]

—u O Bl(o —p T A= 0T = b L 20— p T B { =30 b 0 012 )
+3(oy—p By {202+ 30102 — 0128 = b P LY. (3.11a)
Here £ =1n|8/(b;+9)|, o =—2AkB7(2b,+Au) (9,95), (3.11b, ¢)
ay = —b, AkB™'(4b, +3An) (9o 98),, a5 = —2b7 X°kuB(g,9%),, (3.11d, e)
and the logarithm & present in (3.11a, b) requires that (3.11a) should be restricted
to positive & (i.e. s > B7b,, above the critical layer) at first. The result (3.11a)
continues to hold below the critical layer, however, provided a critical-layer jump
contribution is added to & or equivalently to 4,,: see §4 below. More significant, as

it turns out, are the induced properties of w,,, u,, near the surface, as s >0+, where
the singular behaviour

7

10~ X185 x Ins+0(1), (3.120)
10~ X187 H0(1), (3.120b)

holds, from (3.10a), (3.11a), given that g,, = 0 for k unity. Here y_,, x., ¥_, are given
in Appendix A. In addition, v,, does not tend to zero as s— 0. It follows from (3.12a,
b) that an extra region or wall layer must be produced, near the surface, to smooth
out the singularities in the mean flow; the flow features in this wall layer are
addressed in §5. It is found also that the inner constraints on the mean-flow terms
above, as s >0, and hence those (see below) on the forced fundamental terms at this
level, rely on the wall-flow properties, and so we return to those constraints in §5. In
preparation for that, and for the next section, we observe meanwhile that the forced-
fundamental solutions are

Wy = —10"H{ —iAgy; — @11, — (8 — 1) Apiw, + pswyy, — Ny}, (3.13a)
Uy, = Azl—iJ(S 07 1By, ds, (3.13b)

formally, from (3.2¢), (3.3¢), (3.4¢), with u,, —>A4,, at large s; here
= §4)an3‘"—i/\go8"1(/\@010+Bu10)—BiA08w103, (3.14a)

5 —
By =% Q,0"+@= Aa_l{_i/\gm_guy_ (s—1) Ainw,

n=1
+ 5wy — N gr - wyy, — Api(s — 1) wgy+ pustuy g — My, (3.14D)
Phil. Trans. R. Soc. Lond. A (1992)
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Nonlinear effects near wing-tips 143
and, on use of the previous lower-order solutions,
Ly = 3iAkB7gol*g,, Ly =0,

3.14c¢
Ly = —5A*B%, |g,l*g, Ly = —3iAk*Bb3 |go|290>j ( )

4
My, = 3 K, 0"+ (A2, B 1071+ Ay) i(Awyy + Buyg) — Ay Bisuyy,,  (3.14d)

n=0
with K,=1iBA}¥A4,,, K, =iX*(gEAd,,+A4¥7:s). =0 1 (3.140)
K, = 3i%k%, Blg,®g,, K, = 3iA%k*0% Blg,|*g,,
and Q = 2X%g, 6 %(Aw, o+ Buy,) + ABS liskg, w4
—igy(A2B7107 + k) (Awy g, +Buyg,) +ikgy B(stygs)s- (3.14f)
Hence the forced fundamentals in (3.13 a, b) also become singular as s — 0, in the form
Uyy ~ K18 '+ Kk, Ins+0(1), (3.15a)
o ~ (b k,—K ) Ins+0(1), wy ~ K ;s 4+0(1), (3.15b, ¢)

(see coefficients in Appendix A), in view of the singular mean-flow response in
(3.12a, b) and the appearance of Usgs Wig in (3.13a) ff. It is found also that the
presence of logarlthmlc terms here and in (3.12a) requires insertion of a mean-flow
term, X5In Xu,,, say, in U in (3.1a), along with a forced fundamental XnXEv,,,
in V. It is then found that the solution for u,,, is simply the displaced form u,,, = 4,,,,
independent of Y, and that v,,, oc g,4,,,, With 4,,, to be determined. Matching
with the wall layer of §5 below, however, then requires, in effect, the tangential-flow
constraint that g,4,,, o (ib, kx,—K;) from (3.15b), which fixes the form of 4,,,.
These terms have no substantial influence on the other terms examined here and in
the following sections. The main features are the singularities in (3.12a, b), (3.15a—¢),
and these and other aspects are taken up again in §5, after the study of the
critical layer immediately below.

4. The critical layer

The critical layer occurs at small ¢, in the midst of the bulk flow, with the normal
scaling . s s
g =B71(b; X +X534) (4.1)

holding, where 4 is now O(1) and in effect ¢ —> X734, for the case k = 1 still. The
expansions of the flow solution here, as implied by the breakdown of those in §3 at
small &, are

U=B"X+X0,+X0,+0,+X 50U, nX+0)+..., 4.2a)
V=XV,+..., (4.2D)
W= XiW, + XsW, + ..., (4.2¢)

with $ remaining as in §3. So the general relative error is now of the order X3, of. §3.
Also, the transformations

0g—>0g— (uXi—1X719) 0, — (b, X3 +3X714)0,, (4.3a)
3;>BXt3,, 0;>X30 (4.3b, ¢)
Phil. Trans. R. Soc. Lond. A (1992)
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144 F.T. Smath
apply, and there is dependence on the variable
F = b, X2+X5\y) (4.3d)

as the fastest scale, in essence through terms £”, where £ = exp (iF).
The continuity balances resulting from substitution of (4.2) into (2.6a) are
therefore

PO,V W) =0=20, V,, W) = L(U,, V,, W) — 0y, + W,,
= y(UM V4’ I/Vzl)_'/I’LU%]_l_ I/Vz;p (44a_d)

where the operator % (u, v, w) = B(up+v,) + Awg. Likewise, the streamwise momentum
balances

BUO, U, +V,U,)+AW,U,, = —iEg,B+c.c., (4.5a)
B(U,Up+...)— pb, B0, = 0, (4.5b)

BU,0,p+...)—pU, U,,— by B0, + W, U,, = —iEg,; B+ pg,, E—2iE%,, B+ c.c.,
(4.5¢)

B((L Uip+ ~--)_ﬂ(l72 ﬁ177+ [71 ﬁzy)—ﬂblB_lﬁ3y+%A2ﬂB;1 (71[«'
+ (W Oy 4 W, 0y =Wl = 0 (4.5d)

are obtained from (2.6b), with analogous equations holding for the spanwise
momentum balances from (2.6¢), and similarly for the 4L terms in (4.2a) ff. The
critical layer is ‘fully nonlinear’ in the sense that the dominant inertial operator, in
(4.5a), includes the contributions U, U,,, etc. (see Benney & Bergeron 1969;
Haberman 1972 ; Smith & Bodonyi 1982; Bodonyi et al. 1983 ; Smith et al. 1990 and
references therein). This is due to the main flow speed in (4.2a) being equal to the
effective phase speed present and due to the effective disturbance sizes in (4.2a—c)
and earlier in (3.1a—e).

Relatively simple solutions appear to exist, nevertheless, although we should
stress that there can still be arbitrariness present through the active vorticity as in
the wall-layer behaviour addressed in the next section. With the definitions

¢, =BU,+AW,, v, =BV, n>1, (4.6)

introduced, governing equations for ¢,,v, can be derived by adding B times the
above streamwise momentum equations to A times the spanwise ones, and the
appropriate boundary conditions stem from matching at large 4 with the bulk-flow
solutions of §3 at small §. A possible solution at leading order is then simply

¢, =4, v, =—iHg,(B*+ A% +ec.c., (4.7)
while at second order
g, = B(EA,+c.c.), v,=—BA,4iE+c.c. (4.8)

is a possible form. We are then left with finding ¢,,¢q,, and so on. The individual
velocity components at this stage are given by

W, = B, k24 + hy (£, ), (4.9a)
- I - . - dF
I/V2 = fl_B lbl/,LVVl,]"‘B(EAO‘i‘C.O.) I/VIF +B(1‘EA0+CC)AVVIA]W+}L2(§ 77),
(4.9b)

Phil. Trans. R. Soc. Lond. A (1992)
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Nonlinear effects near wing-tips 145

from solving the analogues of (4.5a, b), where A, h, are arbitrary functions of 4 and
§ =34+ H, apart from the matching requirements at large |4|, H, = —v,, and the
integration in (4.90) is at fixed £. The solutions for 7, U, then follow from (4.6)—(4.8).

The above shows that the irregularities in the solutions of §3 as § >0+ (which
appear here as 4 —+ 00) are smoothed out satisfactorily inside the nonlinear critical
layer. Next we examine higher-order terms also, to verify a similar effect for them.
The third-order contributions ¢,,v; are governed by the combined continuity and
momentum equations

Qo+, = pUy,— Wy, (4.10a)

AG3p+ 01954+ 03 = — Qo Qop + B b, gy, — Ty (4.10b)

subject to the matching conditions, for 4 -+ o,
qs ~ A7 [—2B7'b, Aig,, B+ c.c.+ 2B k|g |1+ O(473), (4.10¢)
vy ~ B{2g,,(2b, p— A—Ap?) —ig,, kb,} + B> —2ig,, b, k—ik*q} B} + 0(47%), (4.10d)
after some manipulation. At fourth order ¢,, v, are found to satisfy
Qur T4y =,ul~/'2,]—Wz77, 4.11a)
Aqap + 01 Qas+ 03 = = (@2 8)p — 2G4+ (01— W) @y + B by @y, (4110)
with the matching conditions
g~ Ton|A|+ T+ T, 47 2E+..., vy~ xd+o(47Y), (4.11¢,d)
for 4 >+ o0, again from §3, where
Iy =4kB*u b Ngl?, I'i=BAE+A,E)+cc.+T5, (4.12a, b)
Iy =—=2B"Aubig,,, X=(ud,,—iBA,,)E—2id,, BE*+c.c., (4.12¢,d)

and I'fy are constants. The conditions (4.10¢, d), (4.11¢,d) can be shown to be
consistent with the governing equations (4.10q, b), (4.11a,b) at large |4|. The
complete solutions of (4.10a-d), (4.11a-d) may be obtained formally in a manner
similar to that in (4.9a, b), the latter being used to evaluate the right-hand side
forcing terms in (4.10a, b), (4.11a, b). These solutions may be derived by solving for
the skewed shears first, e.g. 7, = 0¢,/04 satisfies the simplified equation 4 07,/0F =
2B7h, OW, /oy at fixed &, after which g is obtained from an integration. The results
although cumbersome confirm that the required asymptotes are reached at large |4|
and the solutions are smooth for 4 of O(1), thus verifying the removal of the
singularities obtained in §3. Moreover, the property (4.12b), which stems from
substitution into the governing equations, indicates that there is no jump associated
with the logarithmic term in (3.11a, b) (or otherwise, as yet), as the critical layer is
crossed, except possibly for a constant. The latter in fact adds to the arbitrariness
described in the next two sections. Finally here, the logarithmic contributions in
(4.2a) ff. have

Uspy ~ 200y —p72B5) B/ (3ub?) + 0(472), W, = 0(47Y), (4.13)

at large |4|, again matching with the bulk-flow results as required ; see also near the
end of the previous section. The solution for 7,, = 0q,, /04 is found to be an arbitrary
function of &,% which is o(47%) at large |4| and possibly is zero throughout, in which
case ¢, is equal to B times the O(1) term in (4.13).

Phil. Trans. R. Soc. Lond. A (1992)
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146 F.T. Smith

5. The wall layer

This extra layer arises because of the singular response O(s') of the mean-
correction velocities in (3.12a, b), cf. §6b below, and is found to play an important
role. The thickness of the wall layer for the case « =1 may be deduced from
comparison of the basic mean-flow term Xs in (3.1a) and the correction term
0(X 3s71) due to u,,, giving the scaling as s ~ X5, i.e. j ~ X3. The implied expression
for the wall-layer flow solution is therefore

U = Xouy+X5In Xy, +X 5w, + ..., (5.1a)
V=X, 4+ X0, +..., (5.1b)
W = Xswy+X3In Xw,, + X 5w, + ..., (5.1¢)

from the behaviours of the bulk-flow components in §3. Here §§ = X5Y with Y of order
unity typically, so that

05> 05— (uXs—3X"19) 0 —4X Y0, (5.2a)

9;—~X30,, and 0;—>X730,. (5.2b, ¢)

There is dependence again on the fast variable F' = (b, X*+ X5A#) generally through
all the powers of E = exp (il") present, in effect; among the terms shown in (5.1a-c)

only #,,,w,, are independent of F.
At leading order, the governing equations from substitution into (2.6a—c) are

Bty +Uyy + Ay = 0, (5.3a)
—b, @y, = —BigyE+c.c., —b,W,p=—Alg,E+c.c., (6.3b, ¢)

for the continuity and the streamwise and spanwise momentum balances in turn. So
the solution has the form

uy = by Blg, B +g5 E") +u(n, Y), (5.4a)
v =—ib{(B*+A%) (g, E—g E71) Y, (5.4b)
Wy = b Ago B+ g E~Y)+w(n,Y). (5.4¢)

Here the parts involving £, £~ match as required with the bulk solutions of §3 at
small s: see (3.6a—c). The parts @, w on the other hand, remain undetermined as yet,
apart from the requirement that

G~Y4y Y1 T~f, Y1 as Yoo (5.4d, )

to merge with (3.1a, c), given (3.12a, b). Further, in the sense that %, % represent the
total mean flow, the general effect here is a fully nonlinear one.

To uncover more about the mean flow in the present layer we proceed to higher-
order effects. The controlling equations at the next order are found to be

By p+ 01y + A0, p — iy, +w,, = 0, (5.5a)
— b, @+ Bty Wy + Ty Uy + AWy Uy = — (G1X), (5.5b)
— by W, o + Bty Wy p + 0y Woy + A0y Wy = — (G17), (5.5¢)
where G1X = {(Big,, — pug,,) B+ 2BiE%,} + c.c.,

G1Z = {(Aig,, +g,,) B+ 2AiE%g,,} + c.c.
Phil. Trans. R. Soc. Lond. A (1992)
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These yield the solutions, from the momentum balances (5.5b, ¢) (the continuity
equation (5.5a) is used later),

Uy = (U, B+, B%) +c.c.+7,(n, Y), (5.6a)
W, = (W, B+, B®)+c.c.+w, (7, Y), (5.60)
with %, w, being further, unknown, mean-flow contributions, while
Wy, = by*g{(BU+Aw) B— (B*+A?) Yﬁy}+Bb;1911+ibl_lﬂgoq: (5.6¢)
Uy, = Bby' g1, +3Bb1°g5(B2 + A%), (5.6d)
n= b;l(/\gu—igo,])—f-bl_zgo{(Bﬁ-l— AW) A — (B*+ A%) Yy}, (5.6¢)
Wy, = Aby'g1,+3A07 %05 (B2 + A%). (5.6f)

The velocity expressions (5.6a, b) combined with the asymptotes (5.4d, ¢) can be
shown to match satisfactorily at large Y with the bulk-flow velocity solutions of §3
at small s. No extra conditions on the total mean flow are found, however, at this
level.
At a higher order, the governing equations of §2 yield the momentum balances
— by Uy + By Wy p+ 1y U ) + (D3 Uy + Vg Uyy) + A Uy p+ W U )
— Wilty W, + Wy Uy, — Ay = — (G2X),  (5.7a)
- bl ?’T)ZF +B(?Z0 wlF + ?Zl wOF) + (?71 wOY +?70 wlY) + /\(wo wlF +w1 u_)OF)
— Wy Wy, + Wy Wy, — ANy = — (G27Z), (5.7b)
with G2X = {(iBgy, — pg11, + Aingo) £+ O(E?)} + c.c. — ug,q,, (6.7¢)
G27 = {(iAgy, +g1177)E+0(E2)}+C-C-+9107,‘ (5.7d)

Concerning the mean-flow effects proportional to £° alone, we therefore obtain, from
(5.5a) coupled with (5.7a, b), the total mean-flow equations

— {8, + 0,y +w, = 0, (5.8a)

(— P +0) Ty + Dy Ty +{(— ity + oy ) Uy, + Doy Tyy —1A(Wgy @y + Wy Ty} + .0 = 0,
(5.85)

(— WU+ D) W, + 0, Wy +{(— pily, + @) Doy, + oy @y y + 1B (g, W3 + 6y, 0F)} +c.c. = 0,
(5.8¢)

with 7, denoting the mean-flow component in 7, %, the £ component in #,, and so
on. On use of the solutions in (5.4a-c), (5.6a, b), and with the definition of the skewed
mean velocity,

7 =w— ul, (5.9)
(5.8a—c) then reduce to the governing equations
g, +7y =0, (5.10a)
T, +7,y = (), (5.100)
for 7,7,. Here —%(y) is the effective pressure gradient, given by
— 9 = (24 1) (B2 4+ %) b%(Ig ), (5.10¢)
and the main boundary conditions are
g~—pY+o(Y™), B, ~—pu'%+0Y), as Y- o0, (56.11a)
7,=0 at Y =0, (5.11b)

Phil. Trans. R. Soc. Lond. A (1992)
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in view of the matching in (5.4d, ¢), along with (5.9) and (5.10¢, b), and the surface
tangential-flow requirement respectively.

The total mean flow in this wall layer is controlled essentially, then, by the 2D
inviscid boundary-layer equations (5.10a, b) subject to (5.11a, b). The major point
now is that the mean-flow quantities appear to be arbitrary here, since differentiation
of (5.10b) with respect to Y shows that the mean skewed shear or vorticity, 7 =
0g/0Y, is an arbitrary function of the mean skewed streamfunction i,

7 =7(), (5.12)

where g = 0/ /Y, withy = 0 at ¥ = 0 say, and the only significant restriction on 7GM
is that 7 ~ —u+o0(Y %) at large Y. This arbitrariness in the solution for g,7,, and
hence in %, w, reflects the dependence of the present nonlinear large-time behaviour
on the initial state at zero time, and subsequently, we believe, and it affects the entire
nonlinear response significantly, as shown later. It is also a little reminiscent of the
arbitrariness in the vorticity for the purely 2D initial-value problem, referred to in
§1, although in contrast with that case the vorticity here cannot be simple, as the
solution for § does not admit a trivial form. Certain helpful features can be written
down explicitly, nevertheless. Thus the constraint (5.11b) inserted in (5.1056) yields
on integration the Bernoulli relation

Tly-o = —2(u2+ 1) (B2+ A%) b %g,|*+ const., (5.13)

which, because of the signs involved, indicates that the mean-flow effect must persist
outside the current zone of O(1) values of . Similar relations hold for the individual
components #,w. Again, the mean efflux velocity 7, in (5.11a) is consistent with the
value of vy, in §3, at small s, and other matching conditions can also be verified.
The arbitrariness in the mean flow persists at higher order also. In particular, the
mean-flow-correction velocity %, in (5.6a) remains arbitrary, apart from the

matching condition _ -
uy~x,InY+4,, as Y- o0, (6.14)

with 4, being an arbitrary function of 4. Here (5.14), coupled with the requirement
that the mean-flow term %, (7, Y) remains finite at large Y, merges the wall-layer
behaviour with that in (3.12q) ff. involving u,y, u,,,; similarly, the tangential-flow
constraint imposed near the end of §3, concerning 4,,,, is necessary for the merging
with the response in the present wall layer, since a non-zero O(X In X) E-contribution
in V would be inconsistent with the condition of tangential flow at ¥ =0. The
unknown wall-layer displacement term A4,, however, has a profound effect, since it
is equal to the mean-flow bulk-displacement term 4,, in (3.11a), to within an
additive constant. Hence A4,,(5) is also arbitrary, in the sense above, and that
arbitrariness then feeds into v,, and the nonlinear critical-layer solution of §4 as well
(see ¢,), and more significantly into the amplitude equation for g, in §6 below.
It might be argued further than an arbitrary displacement effect, A(y) say, could be
present in the total mean-flow solution in the wall layer, corresponding to adding A4
to Y in (5.11a) and in (5.4d, ). This would induce an O(X%) mean-flow correction of
U in the bulk flow of §3, however, comparable with the fundamental, and (as such)
would appear to alter the ordering, starting in §3, to a very significant extent.
Although that cannot be ruled out (after all, we do not claim uniqueness), it is felt
to be tantamount to the introduction of a completely new type of nonlinear
disturbance; see also the comments on large-amplitude effects in the following
sections.

Phil. Trans. R. Soc. Lond. A (1992)
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6. The external relations, and the amplitude equations

The analysis in §§3-5 yields general ‘internal’ relations in effect, between the
pressure and displacement components, that apply to any flow governed by the
large-time boundary-layer-like equations of (2.6a—e). It remains to impose the
‘external ’ relations of (2.7) or (2.8a—c) which are specific to the present context of the
incompressible 3D boundary layer. Below we continue first with the case k =1, in

§6a, before modifying the analysis to the case k = X3 in §6b.

(@) The k =1 case
The external pressure expansion, in line with the internal one (3.1d), is of the form

P =X¥Eg,+e.c)+... + XEG,+ .. )+ + (B +..)F ..., (6.1)

but with the components g, etc., being dependent on thelz normal coordinate %, of
order unity now, where the fast scaling 7 = X7'(1+ %)% is implied by the fast
X-dependence present in H, etc. So here

o1 7 7] oL 15
aX»aX—<,uX3—3—X)6”+§67, 82—>X3677, ag—> (1 +/,02)2Xa§. (6.2)
Substitution into (2.8a) therefore leads to the successive governing equations
D(G) =0, 2(7,) = Qi(ﬂB_/\)gom (6.3a,b)
(2 —3(B*+A%) (712) = 0, 05(Fh0) = O, (6.3¢c,d)
D(Fn) = 21(uB—A) g1y, — (1* +1) oy, + 2AB75,, (6.3¢)

where the operator & is defined by
D = (14 p2) 02— (B2 +2?), (6.4)

and (6.3b—e) show the gradual intrusion of the slowly varying dependence present.
The boundary conditions require boundedness at large 7, essentially, and, as7—~0+,
the pressure matching g,-—>g¢, (»=0,11, etc.) and the normal velocity matching
(1+u2)i 0y g, > — B4, etc., from (2.8, c).

Hence at leading order we have the solution, from (6.3a),

Go = goexp (—77), with 3= (B*+A%(1+p%)7 (6.5)
which yields the first external pressure—displacement relation
(1+ %) ygo = B4, (6.6)
Similar working applies to the higher-order components in (6.3 b—¢), giving the results
(1+/‘2)%(7911_7511) = B4, +2uiBA,,, (6.7)
(L4 u?)yg,, = 2B%4,,, (6.8)
J10 =010 =0, (6.9)
(1 +/‘2)% (V9o —Ty) = By, + zﬂiBAun +2ABn4, _quAomy (6.10)

for the higher-order external relations. Here
Ty, = i(A=Bu)y (1+p*)7" Yoy
Moy = {20(A—=Bp) g11, + (0° + 1) gy, — 2ABngo + 1y (A= Bu) 10,3/ {2y (1+ %)}
Phil. Trans. R. Soc. Lond. A (1992)
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150 F.T. Smith

Further, the result (6.9) for the mean-pressure correction is that anticipated in §3
and is due to the lack of fast dependence in the mean-flow contributions ; indeed, the
mean-flow displacement E°A4,, forces a non-zero pressure feedback only at higher
order, namely

2 [P Ayged
gzo=(1+ﬂz)_§%f_ W“’_%g (6.11)

via the quasi-planar properties holding on a larger external normal scale of 7 ~ X 3.
We proceed now to couple (6.6)—(6.10) with the internal relations of §3.
First, (3.6d) with (6.6) gives the balance

b, = B(B2+ %)}, (6.12)

which is effectively the dominant eigenrelation, leaving g, arbitrary. Second, (3.8d)
with (6.7) likewise leaves g, g;, arbitrary so far, but imposes the second eigenrelation

Ab, = u(B2+A?). (6.13)

Here, given the value of y, i.e. the direction of the edge region (see §2), the results
(6.12), (6.13) (and the definition in (3.2a)) serve to fix the other constants b,, B, A. For
the specific case of the angle arcsini = 19.47°, corresponding to linear behaviour
holding everywhere outside the edge region, the constants are

p=87% b =316, B=3/4, A= (3/8), (6.14)

consistent with the previous linear theory (Doorly & Smith 1992). Third, (3.7d) and
(6.8) determine the second-harmonic amplitudes in terms of the unknown

fundamentals,
G2 = _B—zgg’ A12 = _%b1B_5g%- (6.15a, b)

The results above allow some simplifications in the expressions for the coefficients
present in the solutions of §3, and details of these simplifications are available from
the author. Fourth, the implied mean-flow-correction effects at this stage are covered
by the results (3.9) ff., (6.9), (6.11), the primary feature overall being that A4,
remains arbitrary ; see also §5. Fifth, the combination of (6.10) and the solutions in
(3.13a, b), along with the critical-layer and wall-layer responses of §§4 and 5, leads
to the amplitude equation for g,(7), as follows.

In essence, the internal pressure-displacement relation between g,,, 4,, follows
from setting s >0+ in (3.3¢), (3.13b) and imposing the match with the wall-layer
solution of §5, a match which involves singular contributions of order s7 and In s as
well as the O(1) terms. This process leaves the internal relation as, for s >0+,

b, [f 07'B,, ds— iAZl] + vy ~ —1Byg,, + 1911, — 1Agy+ Aiguy— My, , (6.16)
formally, where the small s behaviour present follows from (3.12a, b), (3.15a-c).
Here, after some working, the O(s™*) and O(Iln s) terms are found to cancel out, as
expected. Then the coupling with the external relation (6.10) leads to cancellation of
all the g,,,¢,;, 911, terms also, on use of the previous results in this section, leaving as
a solvability condition the amplitude equation

%gomy—fzngo =_b11_%21(-F'P')7 (617)
Phil. Trans. R. Soc. Lond. A (1992)
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for g,(n), again after some working. Here F.P. denotes the finite part and

4i i(uw?+1) biu? i(uB—A2u? . )/
g — _*pa ye 2 1 32y _ _
7, B(B + A%+ o8 + 5 (B*+A?) R 2i(uB /\)Bz, (6.18a)
T, = 1A' B[ — Au+b,(u*+ 2%)], (6.180)
_ i/\2|go|2go N * 1 7.
I = ——-~2b1B5 +(F.P.) . 0@ ds; (6.18¢)

further details here and below are available from the author. In the specific case of

(6.14), therefore, \ .
T, =34/2, T,=1(2/3), (6.19a, b)

and these values provide a check on the analysis. For the right-hand side of (6.17)
contains all the nonlinear amplitude-cubed effects and so, for a linear disturbance,
(6.17) reduces to Airy’s equation for g,(y), giving the solution

gy o Ai (3752%) (6.20)

in terms of the Airy function Ai, for the case of (6.14), (6.19a, b). The solution (6.20)
agrees with the previous linear theory, as required.

In the nonlinear régime, however, the full amplitude equation (6.17) applies. The
most interesting feature then is that the nonlinear coefficient (of |g,|%g, below) is
influenced by the mean-displacement term 4,,, through @,.#,, in (6.17), (6.18¢),
(3.11a), (3.14d, f) and, since §5 shows A4, to be arbitrary (although real), the
nonlinear coefficient is also arbitrary. (Again see the comment immediately after
(6.18¢) above.) So (6.17) becomes, in a normalized form,

Foii— 190 = lgol*gs, (6.21)

where 4 = (7,/7,)}y and the coefficient d is real but arbitrary, in the sense of being
dependent upon the development of (2.6) ff. at O(1) scaled distances before the large-
distance form of (2.9) ff., it is felt. Here the form of the nonlinearity follows from 4,
being real and proportional to |g,|?, in keeping with the order at which this nonlinear
effect arises. As far as we can tell, a non-zero imaginary part for d or another type
of nonlinearity cannot be produced for example by the critical layer in the present
setting.

A further normalization, g, = 2:d| %, reduces the governing equation to the
second Painlevé transcendent, namely

g’ —1g+2g>=0 (6.22)

(the prime denotes d/d7#), for d negative or positive respectively, subject to the
condition

g~%eXP(—%g) as 1> 0. (6.23)
27[2774

Here g,, g are assumed real without loss of generality, the condition (6.23) corresponds
to linear properties holding outside the edge region and is in line with (6.20), while
the parameter @, representing a combined measure of the disturbance amplitude and
the mean displacement effect, is arbitrary in the sense defined previously. The form
(6.224), (6.23) is exactly that studied by Miles (1978) and Rosales (1978), and our
interest, like theirs, is in the behaviour of the solution g(7) for any prescribed @ value.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
J

)
i P N

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

152 F.T. Smith

(®)
|

oA ;
o(Al

-—

'

oq
LN

=

Figure 2. The influence of increasing input amplitude on the wing-tip solution behaviour, (a) for
case I (see §6a), (b) for case II (see §6b). The solid arrows indicate the directional effects due to
increased nonlinearity.

A minor point, however, is that unlike these last authors we would not necessarily
restrict ¢ to be bounded: see below. As @ is increased the solution of (6.22), (6.23)
deviates increasingly from the Airy form equivalent to that in (6.20) as Rosales’
(1978) results show. Of most concern next is the solution response at extreme @ values
(figure 2). There appear to be three main alternatives, at least two of which are as
described in Miles’ (1978) detailed analysis. The first is essentially that

lgl o [4F  at large |7l (6.24)

before attaining the asymptote (6.23); see also Hastings & McLeod (1982). In the
second, a finite-distance singularity occurs in which

gocli—al™" as >, £, (6.25)
with 7, a finite constant. The third alternative has, in order-of-magnitude terms,
goc§F where f—7; ~ &, &=f[? (6.26)

and |7,| is large. Miles shows that (6.24), (6.26) agree satisfactorily with the
computational results of Rosales. The three alternatives above correspond to @ being
near 1, typically O(1), and large, respectively, with (6.24), (6.26) applying to (6.22 F)
in turn. The properties (6.24)—(6.26) also have broad implications for the influence of
increased nonlinearity in the far-downstream large-time behaviour which are
considered in §7. Before that, however, we must turn to the alternative case
anticipated at the end of §2 and the start of §3.

(b) The k = X5 case

The existence of this alternative hinges on the issue of whether there is a significant
nonlinear wall layer or not, and especially on the behaviour in (3.12«) ff. For if,
instead of the response in §3 leading to the wall layer of §5, the equivalent of a
tangential-flow condition is imposed on the bulk mean flow in §3, then the mean
pressure term ¢;, must be non-zero. In consequence, the mean displacement is
increased by an order X3 in relative terms, in view of the external relations as in §6.1
and the slow variation of the mean-flow quantities, leading to an analogue of (6.11).
This increase, which accentuates the influence of the mean-flow correction on the
nonlinear solution behaviour, is the basis for the re-ordering associated with

k= X5, (6.27)

With (6.27) holding, along with the bulk-flow expansion in (3.1a—e), much of the
working in §§3-5 and §6a stays intact. It is as if terms E+¥ for the x = 1 case are

Phil. Trans. R. Soc. Lond. A (1992)
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replaced by kYE*Y now except for the mean ¢,, term in (3.1d); the extra factors k¥
act to suppress certain nonlinear contributions in favour of others, while leaving
unaltered the coefficients in the equations for the favoured terms since the fast
dependence E*Y dominates the derivatives involved, with a small relative error of
order X2, Thus the second-harmonic contributions for instance tend to become
suppressed. Further details are presented in Appendix B, the main points being that
a weaker motion close to the wall demands that

G0 = — (B +A%) b g, 95, (6.28a)
while the external flow yields the relation
PE(LA+ ) J(°° 4, dE
= 6.28b
910 o =8 ( )

for the displacement, and then the nonlinear effect on the main amplitude equation,
obtained as a solvability requirement, is dominated by the new mean-flow
displacement, giving

3_190,777—9_27790 = —i(B*+A%) b7 4,49, (6.28¢)
Here (6.28a—c) follow from the modifications of (3.12a)ff., (6.11), (6.16) ff.
respectively, due to the new ordering (6.27). Combining (6.28a-c), and setting

_ [ mi 7y SENEATEATIEAP
[g"’A“”"]_[(32+A2)(1+ﬂ2)%g’(,B2+/\2) \7, 4, 7)1 (6.29)

we therefore obtain the normalized amplitude equation(s)

y AT _2_1f"° A ds

] Ag, where g = _G=a)’ (6.30a, b)
governing ¢(7) (and A(7)). The system (6.30a, b), together with zero conditions on
g(£o0) (e.g. as in (6.23)), replaces (6.22) or its earlier forms (6.17), (6.21). At low
amplitudes the equivalent of the Airy solution (6.20) applies of course, whereas at
most amplitudes (6.30a, b) require a computational treatment.

Computational results for (6.30a, b) were obtained by a finite-difference method
described in Appendix C and are summarized in figure 3. The Airy form is confirmed
at low amplitudes, but as the amplitude is increased to O(1) or larger the
characteristic 7j-scale appears to increase. This leads to the account of the multi- -
structured solution behaviour at high amplitudes, presented in Appendix D and
figure 4. There the 4 scale and the A scale both increase indefinitely but |g| remains

icall ith _
O typieadly, wit ]~ Jil arge. g = O(1), (6.31)
apart from thin regions where the variation in |4] is lessened, |f| is small (with an
origin shift), and |g| can be large; see also figure 2. The response in (6.31) ff. and
Appendix D, for increasing amplitudes, points to the effects of stronger nonlinearity
discussed in the next section.

7. Further discussion

The aim in this work is to obtain some guidance on 3D amplitude-dependent
effects in spot development in an incompressible boundary layer and start to build
up a picture of the flow structure in a typical nonlinear spot. Such a picture seems

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Computational solutions (marked 1-5) of (6.30a, b) for case II: (a) g, (b) 4, versus 7, at
various amplitudes. In (a), the results x, + are sample extrema for the solutions marked 5,1 in
turn. See also Appendix C. In (b), the line 4 = 4 is added for comparison purposes; see figure 4, and
Appendix D. A magnified view of (b) is given in (¢) and shows significant oscillations present in 4,
which are in line with the theory in Appendix D.
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Tigure 4. (a) The structure (for case II) of the solution of (6.30a, b) at large amplitudes, showing
the three main regions L, M, R (see §6.2, Appendix D) and the thinner adjustment zones a,, a,. Here
4 is large. (b)-(d) A computational solution for the large-amplitude behaviour in region L (case II),
from (D 16) ff. in Appendix D, showing (b) the integrand of (D 16), (c) the effective pressure, (d) the
displacement effect.

to be emerging a little now, as described below, from the present study of nonlinear
edge-layer dynamics near the wing tips.

In §§3-6 above, linear properties continue to hold outside the edge layer(s), leading
in particular to the prediction of 19.47° for the wake half-angle (Doorly & Smith
1992) unless there is some extra forcing present for example. Inside the edge layer,
on the other hand, several interesting features arise as nonlinearity first enters play
in the large-time large-distance analysis. Let us address case I first, where

k=1 (7.1)
Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

///\ \\
L A

/\
'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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This leads to nonlinear wall and critical layers being generated (§§4 and 5), with the
latter exhibiting a checkerboard pattern of closed streamlines. The mean vorticity
produced appears at present to contain a degree of indeterminacy for large times and
distances, along with the displacement effects, to the level of the working here at
least, due possibly to the vortex stretching present in 3D although there is bound to
be some degree of arbitrariness anyway, associated with the initial conditions. We
note that in fact some mean-flow displacements are taken to be zero right at the
outset of §3, and the corresponding mean-flow correction has maximum relative
effect in the wall layer and the critical layer. In turn, the additional nonlinear
contribution to the Airy equation describing the edge-layer response contains an
arbitrary coefficient: see §6a. More significantly, however, as the characteristic
amplitudes present in the edge layer increase the influence of nonlinearity can spread
from the edge layer towards increasingly negative or positive values of #, i.e. heading
for the middle portion of the spot in the former case (see figure 2 again). The
implications of this can be seen from the extreme propertles (6.24)—(6.26). Thus (6.24)
leads to a typlcal pressure $ of magnitude ca. X3|4]} (using (3.1d)) as |7}| increases, i.e.
as (Z ,uX ) X3 increases. Hence when the mlddle portlon of the spot is entered, where
Z/X u is O(1) typically, 7] becomes O(X3) and so 1nereases to the magnitude
0(X?). Likewise, (6.26) yields the same magnitude, as |7,| > O(X3), along with a faster
local spatial scale of order X~1, which is also implied by (6.25). The dominant new
impact here then is twofold : strong nonlinearity tends to spread right across the spot,
as well as developing shorter length scales within the spot, in contrast both with
linear disturbances and with the nonlinear ones of §§3-6. The new behaviour
proposed above points to a subsequent study (Smith 1992) of the middle portion of
the spot, based on the predictions just mentioned and with significant differences to
be expected compared with the previous linear régime.
For the alternative case II, in which

k=X, (7.2)

some of the above points still apply but the overall implications are rather different;
see §6b. For a start, the wall layer is much less significant, and the main nonlinear
influence is due to the induced mean-flow displacement. In addition, the influence of
increased nonlinearity in the edge layer seems to produce a definitive inward trend
towards the middle of the spot, subject to an origin shift in 4 absorbing a constant
term in 4 in §6b. (The inward trend here stems from the result (6.28 @) that the mean
pressure produced is negative, see also (6.306) and Appendix D.) Thus the
characteristic pressure $ now has magnitude ca. X and the displacement —A4 is O(1)
mainly, but the mean displacement increases like X‘%Iﬁl from (3.1d, e), (6.31) with
(7.2), at increased amplitudes. So the suggestion is that nonlinearity again floods into
the middle portion of the spot, where || becomes O(X?) in essence and forces the mean
displacement to rise to the order X. The latter represents a strongly nonlinear effect,
since the typical mean velocity is also O(X) (see (3.1a)); yet the oscillatory part of the
displacement stays relatively small, in contrast with the previous paragraph. Smaller
length scales also develop, in line with the comments just after (6.31) above.
Clearly, the flow features provoked by stronger nonlinearity as described in the
previous two paragraphs, and in figure 5, are of much concern, and resulting studies
are in progress. A main zone for such more nonlinear spots would seem to be further
downstream, at streamwise distances proportional to time (Doorly & Smith 1992)
but with a typical fast spatial scale acting of order unity, rather than at distances of
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Figure 5. Schematic diagram of the next stage, encountered at higher input amplitudes, according
to §7. Case I leads to only one typical adjustment zone a,, whereas case II yields two, a,,a,, which
are continuations of those in figure 4 (a). The amplitudes and short length scales involved are also
different, as explained in § 7, but in both cases the middle of the spot is now strongly nonlinear and
the spreading angle 6, is now different from the angle 6, of figure 1.

order (time)? as in §§2-6 above. In the main zone nonlinear travelling waves or
solitary waves seem likely, certainly if « =1, and possibly even finite-time
singularities (Stuart & Tabor 1990). The solution can be matched back to the current
(time)? zone, however, to yield the 19.47° prediction for example if the amplitudes
involved are not too large, as a relatively small-distance asymptote. This picture is
broadly consistent with the simpler 2D case in the context of thin-layer flow, where
the Benjamin—-Ono equation applies and yields a main nonlinear O(time) zone
supplemented by the O(time): scale. The current extension to the more complex 3D
case for full Euler flow is of more interest, of course, including the perhaps surprising
feature that the O(time)? zone for Euler flow is governed by a triple-deck interaction
(52).

Aside from the present research on nonlinearity and its immediate consequences,
there are a number of other physical processes that are significant in real spot
evolution and are far from fully understood. Viscous effects are certainly very
significant (Walker 1990, etc.) and they can enter the reckoning in several ways, e.g.
at large times in the third context described in §2 or at O(1) times through break-up
singularities and sublayer bursting (Smith 1988; Peridier et al. 1991; Hoyle et al.
1991); cf. also the O(Re %) scale in Smith & Burggraf (1985). The domino process
mentioned in §1 could well be connected with successive occurrences of the finite-
time break-up in Smith (1988), as in a chain reaction. Again, no uniqueness is claimed
in the theoretical work as we are seeking particular forms of nonlinear effects. There
may well be some flows in which the mean-flow displacement is stronger than that
in §§3-6; see also earlier comments, e.g. in §5. Indeed, we favour the description
given by case II (in §6b), in which the 3D mean-flow displacement yields the
dominant nonlinear effect, rather as in vortex-wave interactions. For, in case II, the
wall layer is relatively weak, as (6.28a) cancels out the driving pressure gradient
(6.10¢) effectively, in contrast with case I where the wall-layer motion is strong and
even has to persist substantially beyond the edge-layer region, which seems an
unlikely occurrence. Other forms may feel the impact of other vortex-wave
interactions (Hall & Smith 1991), of possible wave resonances, of pressure—
displacement viscous—inviscid interaction (see previous references in this paragraph),
of nonlinear unsteady critical layers, of 3D vortex applications stemming from §2 (as
in Smith 1987), and so on; see also other references in §1.

Regarding connections with experiments, it is almost certainly too early to expect
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direct quantitative comparisons to be feasible. Nevertheless, as far as the present
theoretical findings are concerned directly, possible agreement of a qualitative
nature can be claimed with Glezer et al.s (1989) and others’ experimental emphasis
on substantial wing-tip and trailing effects. In broad terms, moreover, the overall
picture emerging above, of a nonlinear multi-wave form flooding the middle and
main zones of the spot, at increased amplitudes, and supplemented by successive
viscous-sublayer eruptions (see ‘domino process’ above) and induced smaller scales,
appears to be possibly in line with most spot experiments (D. J. Doorly, personal
communications); see also references in §1. Also the longitudinal vortex formations
suggested by §6b seem to be observed in some of the recent experiments; and it is
intriguing that the description in §6b may lead to a logarithmic profile for the higher-
order mean streamwise velocity correction near the wall. On the other hand, the
theory so far rather over-estimates the spread angle of the spot in comparison with
observations, and, as Sir James Lighthill has pointed out (personal communications),
the relatively abrupt natures of both the wing-tips and the leading edge observed in
a turbulent spot have still to be explained fully. Against that, however, the spread
angle is altered by nonlinearity as described in figure 5 and above (cf. the alterations
due to viscosity and compressibility (Doorly & Smith 1992)), and it is felt that the
beginnings of an explanation for the abrupt wing-tips may well be provided by the
results (6.24), (6.31) (and see figures 2-5), at increased amplitudes. Satisfactory
theoretical accounts for several other basic aspects of spots could well stem from the
further nonlinear analysis and related computations to be performed, as indicated
earlier in this section.

Meanwhile, more experiments and/or full computations on the effects of carefully
controlled and gradually increased initial amplitudes on the downstream de-
velopment of nonlinear spots could be extremely useful, partly to compare with the
theoretical suggestions (mainly those of §6b) and partly for more clarification (see
also Gaster 1990). Many extra issues of the present theory itself also remain to be
investigated, including the influences of viscosity (cf. §3), the O(time) zones, and the
mid-spot behaviour while (3.1) holds, and there are applications to compressible
boundary layers (cf. Doorly & Smith 1992), jets, channel flows, wakes, free-surface
flows and so on.

Thanks are due to Sir James Lighthill primarily, who provided the author with much
encouragement on both the Euler stage in general and the current approach regarding nonlinear
effects in spot development, to Dr R. I. Bowles, Dr D. J. Doorly and Dr M. Blair for their interest
and comments, to the referees for their comments, and to Professor M. V. Berry and Professor
D. H. Peregrine for pointing out certain references. Further research is to be reported in a review
article by the author in the Journal of Engineering Mathematics in 1993/4, indicating among other
things an interaction in which the wave and the mean-flow correction are reduced by further
factors &, k%, in the context of §6b, and a derivative (multiplied by a pure imaginary constant)
operates on the left-hand side of (6.28¢), although no significant change is produced in the ultimate
behaviour described earlier in this section. The author thanks Dr R. G. Bowles and Mr B. T. Dodia,
with whom further research is being conducted. Support from SERC, U.K., from Ohio State
University in the form of a Distinguished Visiting Professorship during part of this research, and
from AFOSR (grant no. 89-0475), is gratefully acknowledged.

Appendix A. Some coefficients appearing in §3

The coefficients y_;, x,, ¥_, appearing in (3.12q, b), and certain coefficients in
(3.15a—c), are defined as follows.
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First, directly from the momentum equations,

Xoyy = 12 (—= Byt + By 0% — B, 07°), (A1)

so that on integration
X-1 = kBbT* n7%g*. (A 2)

Also, y_, = px_,, and
X = —2Bkby* u” (A +p7'B), (A 3)

from working similar to that in (A 1), (A 2).
Second, the relations
byk_y =B(k+2)g,x_1,
—by k,—Br_; = XPb7HAR_1 +By_,) + AkBb g0 ¥, — B 9o X1
by R_y = Aby' go(AX_y +Bx_,) +kBgy X_,
Ky =ib7" B9, x,,

determine the coefficients x_,,«,,k_,, K, in turn.

Appendix B. The main details for case II, in §6b

With (6.27) holding, the expansions in (3.1 a—e) yield the following main properties.
First, the continuity balances stay as in (3.2a-f), except that now

Upg = Ayg Vgo = IU’A107787 (B1)

and v,, is identically zero again, so that the subscripts 10, 20 in (3.2 f) are replaced
by 20, 30 respectively.

Second, in the streamwise momentum balances (3.3a—f), the only remaining term
now among the nonlinear ones on the left-hand side in (3.3¢) is

iBA,,u,, (B2)

and the change of subscripts described just after (B 1) applies to the left-hand side

of (3.3f). Otherwise, (3.3a—f) remain intact, as does the formula for f, in (3.3¢g).
Third, corresponding changes occur in the spanwise momentum balances of (3.4 a—f ),

with the nonlinearity on the left-hand side of (3.4¢) being due solely to a term

iBA4,, w,, (B 3)

while w;, in (3.4 f) is replaced by w,,. The function f, remains as in (3.4g).

As a result of the above modifications, the nonlinear influences due to the second-
harmonic terms such as u,u,, are reduced to higher-order effects, and so the second-
harmonic equations (3.25), (3.3b), (3.4b) become redundant as regards the rest of the
working below leading to the amplitude equation. The fundamental solutions are still
given by (3.5)—(3.6¢), (3.8a—d ). Hence for the spanwise mean-flow correction in (3.4 f),
modified as above, the tangential-flow condition as s— 0+ yields the requirement

that
glOn = _f2 at s= O’ (B 4)

because the mean flow is now much weaker near the surface than that in case I in §3.
Use of (3.4¢) for f,, followed by integration with respect to 5, then leads to the result
(6.28a), after some manipulation. Exactly the same result is found from setting v,
and s to zero in the modified version of (3.3f), on use of (3.3¢) for f,.

The result (6.28b), on the other hand, stems from the external pressure expansion,
which is now of the form (6.1) but with «¥ powers inserted as in (3.1d) and with «
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given by (6.27). Since the external relations are all linear, however, and the
appearances of powers of « in (3.1d, e) are identical apart from the new X5 shift
associated with g,,, 4,,, the result (6.285) is implied directly by (6.11).

Finally here, the forced fundamentals w,,, u,; are analogous with (3.13a, b) except
that the contributions due to second harmonics must be omitted now. The
displacement effect in (B 1) for instance gives terms —d8 'BA, w, —0 ?A*4,,¢, in
Wy, Uy 1n turn. The subsequent internal pressure—displacement relation obtained
from letting s— 0+ is therefore the corresponding analogue of (6.16). The external
relation remains exactly as in (6.10), and so the coupling of the internal and external
relations produces the result quoted in (6.28¢).

Appendix C. Computational solutions for case II

The governing equations (6.30a, b) for case II were treated numerically by a finite-
difference procedure. This was designed to allow for the growth

A~hyift as f—>+00, (C1)

where h, is a positive constant. The growth (C 1) is implied by (6.305), given that
(6.30a) yields the asymptote

g oc [ 7isin &7 + const.} as f-—>—o0 (C2)

since |4] < || at large negative 7, whereas § decays exponentially as 7>+ c0. We
note in passing that (C 1) indicates the presence of a significant negative mean-flow
displacement persisting outside the wing-tips of the spot.

In view of (C 1), we worked in terms of the derivative function

B=A4"(%), (C3)
replacing (6.30b) by
,_ [* B(§dg
—2ngg’ = > , C4
w=f G e
coupled with (6.30a). Here (C 3), (C 4) are discretized in the forms
%(-Ei"'-giq) = (lq_i_lq_i~l)/dﬁ’ (C5)
(—m/49)(gi —gi-1) = vi + v, B, (C6)
in a standard notation, where
vy =— i)t ZA{@—5)* -8 B, (C17)
j#i

and v, = 4(4%)"; see Davis & Werle (1982). The 4 variable is given by #_, +
(i—1) 49 =7, with1 < i< 1,4, =7 _,+({I—1) 44, and 7, , are chosen to be suitably
large, with the step size 44 being small. The corresponding discretization taken for
(6.30a) is

(Gi1—29i+9:0) . T

(47)? =9 =—4;9, (C8)

The system (C 5)—(C 8) is then solved by a Newton iteration scheme based on
substituting from (C 5), (C 6) into (C 8), to produce a nonlinear equation for g, in
terms of function values at steps other than ¢, and inversion of a tridiagonal system
for the gs. All the A4;, B, values for 1 <1 < I are then updated from (C 5), (C 6), the
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iteration scheme is continued as above, and so on. Use of the derivative function B
to accommodate the growth (C 1) proved very advantageous for obtaining accuracy,
at least compared with using 4, ¢ alone.

The procedure appeared to work reasonably well, its typical converged results
being shown in figure 3. Tests on the grid effects present through #., and 47
were conducted and proved fairly affirmative, the typical grid distribution with
§-o = —100, 7., = 100, 49 = 0.1 giving satisfactory accuracy in most cases.

Appendix D. The behaviour of solutions for case II at large amplitudes

It is proposed here that at large amplitudes the solution of (6.30a, b) for case 11
becomes multistructured, with three dominant regions present separated by two
relatively thin adjustment regions. This structure is suggested partly by the
computational results in figure 3 and Appendix C but more so by its self-consistency.
We note in addition that descriptions based on a single dominant region or on two
such regions separated by one adjustment region were tried first in this research but
they appeared to yield contradictions in part of the solution domain. The three-plus-
two description which apparently works is as follows.

The left-hand region (L) extends to 4§ = — o0 and has

g=gm*+..., §=45, i§=4"* (D 1)
A = da@)+..., with 4> 1, (D 2)

and A > 7, so that @ > 77. Here the slow variable 7 runs from —o to — o, where o
is a finite constant, while »* is the fast variable giving the main dependence of § but
only a higher-order effect in 4, as we see below. Substitution into (6.30a) leaves g
controlled by

d2g/dy*t = (7—a)7, (D 3)

and similarly for further terms in the expansion, so that the 7 solution is highly
oscillatory,

g=(@a—mn -k eos[ f (a—m%dn*wcz] (D 4)

formally. In (D 4) the expression for the coefficient of the cosine follows from terms
of higher order, and k,, k, are constants, the first of which may be taken to be unity
by suitably defining 4 above. Turning to (6.30b), therefore, we find that the latter’s
left-hand side (—¢?) has both slow and fast dependences present, from (D 4), but the
slow part dominates in the determination of @(7) because of the integral nature of the
right-hand side. Thus, if for convenience the left-hand side is regarded as an effective
pressure, P say, then we have the conditions

} (D 5)
for 7<—o,

(D 6)

P=—Ya—-n,
@ (> 7) is unknown,
so far, to be tied in with (6.300).

The middle region (M) covers a finite range of 7, —o < 7§ < k say, where k(> —0)
is an O(1) constant. Here the variation of the solution is slower, with

g=g0+..., (D7)
A=A7+4724,00)+ ..., (D 8)
Phil. Trans. R. Soc. Lond. A (1992)
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the slower variation being due to the near-equality of 4,7. From (6.30a), 7,4, are
interrelated by B

G = —4,7, (D9)
which serves to determine the correction term in (D 8) once g(7) is found (from
below). So the dominant result here as regards solving (6.30a, b) is that

P (< 0) is unknown, (D 10)

} for —o< @<k,
(D 11)

a=1,
the latter following from (D 8), cf. (D 2).
The right-hand region (R), extending from 4k to + o0, has 4 as in (D 2) effectively
but now a(77) < 7. Hence the counterpart of (D 3) demands that § be exponentially
small. This provides the conditions

P=o, 1 _ (D 12)
for 7> «,
a(<y)is unknown,J (D 13)

on the relation (6.300).
The task, then, is to solve (6.30b), or rather the integral equation

[ a®dE
P D
) = f e, (D 14)

subject to the mixed constraints (D 5), (D 6), (D 10), (D 11), (D 12), (D 13) for the
three dominant regions. This may be done as in Mushkileshvili (1953) (see also
Carrier et al. 1966), or by considering the function

(Z—k)E(Z+ o) (P—ia’) (D 15)

extended into the complex plane (Z = 7+1Y say). In consequence we obtain, after
some manipulation, the single-region integral equation

i P i (D 16)
@ (—o—ppl 2m). —EP(1—8)
for the function (%) in the range 7 < — o, where the substitution @ = 7+ 2 has
been made in that range and @ (= —2P) is required to be positive. A useful
alternative to (D 16) is the equation
20" _ (= m%[ L J( (k—£)Q(E) dE ]
@ (k—7q) M) (—o—=Ep(7—§)
+<2n ) K+0)( —q) i k—7)72, (D 17)
where the constant
“" Q) dg :
D= J T T, (D 18)
o (—O—E) (k=)

which may be used to verify some of the properties given below.
The relations (D 16), (D 17) are consistent with the following features of the
solution near the junctions 7 = —o, 7 = «, and as y—+ 00. First,
P~—oy(—o—q)% a~—o+da®(—o—qF as go—o(=), (D 19)
Phil. Trans. R. Soc. Lond. A (1992)
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where, provided D < 2m,
oy =27¥k+0)i(1—D/2m)
Second, from the analogue of (D 16), (D 17) applied in the middle region M,

P~—a,(c+7)F as To>—o(+), (D 20)
P~ —o k=77 as 7T—k(—), (D 21)
where ay, = (k+0o) (1—D/2m),
& = (O‘—I—K)_%[l—;—n f ’ (“"(‘K’E_ﬁg%(g) dx].

Third, the analogue for the right-hand region R gives
T~ K+ (T—K)=2a,(f—K)F as  G—>«(+). (D 22)
In the above the constants o, a,, @, are all positive, and the conditions associated

with (D 5), (D 6), (D 10)—(D 13) are all satisfied locally, as a check. The appearance
of 3 powers (etc.) locally is to be expected. Fourth, we find that

a~a, b as - o0, (D 23)
P~—laj? as f—>—o0, (D 24)

with the constant o, being equal to unity and the responses (D 23), (D 24) are in line
with that of (C 1). The corresponding behaviours for ¢, in the left-hand region L,
follow from the above as

N {20511(—0‘——77)‘Z as Jo>—o(+), (D 25)
7 as -,
and these are used below.
Again, closer to the junctions there are thin adjustment zones. Near 7 = — o, the
adjustment zone has
g=Afg () +..., Gj=—do+d7%y, A=—Ado+B4,0,)+... (D 26)
and, from (6.30q, b), the local governing equations are
1 [™ A5()dE
T=—A4,9,, —2=—} ! , D27
A 19 A n) =6 ( )
along with the matching conditions
g2l < Il 75 14y) ~ dagln s, as g > —o0, (D 28)
g~ (2052)%77;%7 14, < 77%’ as ;> 0, (D 29)

due to the L- and M-region properties above. The adjustment zone close to 7 = «, on
the other hand, has

g=ABg,(n)+ ..., §=Adk+diy,, A= Acx+A,+A44,+..., (D 30)
as implied by the M- and R-region behaviours nearby. Here (6.30a, b) yield the
controlling equations

L[™ A5&)dE
s =—4,9,, —2=—f 2 , D 31
g2 292 g2 e o (,'72_5) ( )
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similar to those in (D 27), but subject to the matching constraints
go ~ a§|772|%, |4, < !772[%7 as 7y, —>—00, (D 32)
gy < 77%» Ay ~ =30y 77% as 7y, —> 0, (D 33)

in view of the solutions in the M and R regions locally: see (D 21), (D 22).

The first priority, however, is to solve (D 16) subject to (D 25). This was done
numerically using a finite-difference scheme, but applied to

Q= (k+of(—o—pi—7Q

regarded as a function of (F+¢)(k+o)™t. The latter step is for normalization
purposes, since then, in (D 16), o, k are replaced by 0, 1 in turn and a factor (k + o)
is added, in effect. The scheme is used on the 7-derivative of (D 16), to compensate
for the factor just mentioned, with zero conditions on @ corresponding to (D 25)
being imposed in principle at the ends —00,0; in fact asymptotic decay conditions
were imposed on @ at a large negative value and a small negative value of 7,
respectively. The scheme treats the Cauchy-Hilbert integral involved as in Appendix
C, the other terms are written in a centred-difference form, and an iterative multi-
sweeping method is adopted to handle the elipticity and nonlinearity present. The
results are shown in figure 4, and they have been tested for grid-distribution effects,
which were found to be very small for a typical grid of 1001 x 0.02 points in |7|
normalized as above. In addition, the behaviours predicted analytically in (D 25),
and earlier in (D 19), (D 24), appear to be verified well in the computational results;
and there is fair agreement with the trends of the full results of Appendix C, figure
3, at increasing amplitude.
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